陈舟明显愣了一下。
这是一上来,就考自己吗?
从几何角度研究非交换环?
真要说起来,对于非交换环,陈舟还是有些看法的。
非交换环的一个最常见的例子,或许就是矩阵了。
利用矩阵可以得到一批非交换环的反例。
就好像,若s是包含在环r内的相应维数为无穷的域。
那么are11+re12+se22,是左noether与左art的。 在除环上的所有矩阵的有限直积,构成了所谓的半单环类。 这就是通常所说的edderburnart定理。 这也是非交换环中第一个精彩的结构定理。 更加有趣的是,它通过矩阵的对称结构,自然说明了左半单环等价于右半单环。 在交换环中,最常见的两个根分别是jan根与幂零根。 前者简称为大根,它是所有极大理想的交。 后者简称为素根或小根,它是所有素理想的交。 而在非交换的情形中,一个根就可能分化为三个根,满足某类条件左、右理想以及理想的交。 事实上,非交换环r,所有极大左理想的交,恰恰就是所有极大右理想的交。 并且它们良好的继承了相应的可逆性质。 尽管非交换环中有左与右的区别,但也不乏此类殊途同归的有趣现象。 而在交换代数中,由于局部化技术的广泛使用,局部环成为了一个研究的焦点。 但非交换环的局部环技术,似乎受到了限制。 反倒是特别在乎半局部环。 值得注意的是,非交换环中对半局部环的定义,并非是指它只有有限个极大左理想。 而是定义为r/radr是半单环或者是art环。 事实上,半局部环r的各(双边)理想均包含radr,可以化归为art环r/radr中的极大理想,因此至多只有有限多个。 但对于左理想的情形,就必须补充条件“r/radr可交换”。 否则可以考虑域上的矩阵代数,它是半局部的,却可能有无穷多个极大左理想。 至于从几何角度研究非交换环,也就是所谓的从局部方面,研究交换代数的方法。 主要讨论代数簇中的奇异点,以及代数簇在奇异点周围的性质。 但这主要针对的是交换环,而不是非交换环…… 陈舟的脑海里飞速的闪过关于非交换环的内容。 可是,自己这只是半吊子的理解,并没有深入研究过。 面对第一次见面的导师,还是这样的一位大佬。 自己还能怎么看? 与其班门弄斧,说着一些浅显的理解。 还不如老老实实的说,自己没啥看法。 在这样的数学大佬面前,不懂装懂,或者故意卖弄。 才是真正愚蠢的事情。 阿廷教授见陈舟一直沉默着,没有说话。 便又笑着问了一句:“怎么了?有什么想法,可以尽管说出来。” 陈舟看了阿廷教授一眼,最终老实说道:“教授,对于从几何角度研究非交换环,我没有什么看法。” 听到陈舟的话,阿廷教授愣了一下,但也随即释然。 反而陈舟这种不信口开河的做法,给他留下了不错的印象。 轻声笑了笑,阿廷教授说道:“也对,你主要在研究解析数论。或许我应该问你,对于数论研究的看法?” 陈舟闻言,也是笑了笑。 看来阿廷教授,还